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Supervised Learning



Real Estate Pricing Spam Detection Image Recognition

Quarter Bedrooms Size (sq m)

Congratulations FName,

(1) FINAL MESSAGE: Payout Verification -
Albaro 3 100
As part o our celebrations, you have been choosen to partcipate In &

‘exicusive limited time promotion.

Boccadasse 2 85 '$5000.00 PAYOUT is ready to be addressed in your Name and we want to
process. The sooner you act, the sooner it can be in your hands!
Castellstto 4 120
Date
Molassana 3 a5 FName
FIVE THOUSANDS DOLLARS $5000.00
Price (€)
0 350000

1 280000 {Elephant, Cat, Dog, ... }
2 400000 {Spam, Not spam}
3 320000



The Supervised Learning Setting
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- X and ¥ are the input and output spaces where the data lives.

- pisthe unknown data distribution.

- h: X — Yisamachine learning model.

- The loss £ : Y x ¥ — R measures the discrepancy between h(z) and y.



Popular Loss Functions for Regression

Regression, y € R
2 T

— Square: (y — h(x))?
Absolute: |y — h(x)]
— e-insensitive: ||y — h(x)| — €|,




Popular Loss Functions for Classification

Binary, y € {—1,1}

— Zero-one: 1{yh(z) < 0} g | |
Cross-entropy: ylog (14 e ¥"@))
—  Hinge: max (0,1 — yh(x)) 41 .
— Square: (1 —yh(z))?
31 i
Multi-class, y € {0,1}¢, > .y, = 1t
- Zero-one: 2 -
1{argmax, y, = arg max, h(z),}.
- Cross-entropy: 1 ]
— ¥, 1y = 1} 1og (k7 ).
j oL ‘ \ ‘




Empirical Risk Minimization

- We cannot compute h* = argmin, {R(h)} since p is unknown.
- Goal: find h, ~ h* from D = {(x 2,yz)} 1.i.d. sampled from p

Set model class # and (optional) regularizer R, : % — R and compute

hp € argmin{Rp(h) + Ry\(h)}, where Rp(h ZL’
heF 1 T



Choosing the Model Class A

Common choices:
- Linear: h(z) = w'x, Hjnear = {h(z) : h(z) = w'z,w € R}
- Polynomial: h(x) = w'¢(z), ¢(x) = polynomial’s variables
- Kernel Methods: h(z) = (w, ¢(x)), ¢(x) may have infinite dimensions.
- (Deep) Neural Networks (DNNs): h(x) = w'o(W,0(W,_; - a(Wiz)))

Complexity

Overfitting: Complex A can yield h, with low empirical but high expected risk.

— Regularization: penalize complex models (Occam'’s razor).



Choosing a Regularizer

- Lp Regularization: ®, (h,, [0, 00).
- Elastic Net: R, (h,,) = )\1||w||1 I )\QHwH2

- Many regularization hyperparameters: e.g. %, (h,,) = w'diag(A\)w

=+

Tikhonov Regularization Ivanov Regularization
min {Rp(h,) + Aw[5} min ~ {Rp(h)}

h € h o, €7, Jwlp<r

10



L1 and L2 regularization: Ivanov Visualization
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Choosing the Regularization Hyperparameter

— Training Risk: Rp(hp)
— Validation Risk: Ry (hp)

Data split into train D and validation D’.

N =argminRp (hp).
A

Solved via grid/random search.

Overfitting Problematic for many hyperparameters.

Underfitting

Model Complexity, or ¢

12



Overparametization and Double Descent (A = 0)

under-parameterized over-parameterized

Test risk
'% “classical” “modern”
E regime interpolating regime
~ Training risk:
o~ . _interpolation threshold
Capacity of ‘H
Source: Belkin et al. (2019)
Gradient descent select minimum norm solutions = implicit regularization.

13



Computing the Empirical Risk Minimizer

min {f(w) = ii£<hw(xi>7yi> + je/\<hw>}

weW

where # = {h,(z) : w € W} and w are the parameters of h,,.

- f can be convex (h,, is linear, polynomial, kernel) or non-convex (h,, is a NN).
- f can have multiple minima, e.g. when W = R% and d > n.

- fand its derivatives can be costly to evaluate for complex h,, and large n.

Optimization should be efficient and might affect the learning process



Stochastic Gradient Descent

min f(w), f: R* — R differentiable

weRd

Stochastic Gradient Descent (SGD):
Wiy = W — me(wt;& wy € R%.
- 1, > 0 are the step-sizes or learning rates.
- ¢ is a random variable (eg. f(w; &) = £(w ., y,))

- Unbiased: E¢[V f(w;€)] = V f(w)
- Gradient Descent (GD): V f(w, &) = V f(w).

15



Accelerated Methods

Stochastic Gradient Descent with Momentum (SGDM)

Vip1 = VeV + vf(wt;§t>7 vy =0,

_ d
Wy = Wy — My Vsyq, wy € R%.

- v, is an average of past gradients.
- v, > 0 are the momentum factors.
- Gradient Descent with Momenutm (GDM): V f(w; £) = V f(w).

- Other variants, e.g. Nesterov momentum (GDMN) (Nesterov, 1983).



Coordinate-Wise Step-Sizes

ADAM (Kingma and Ba, 2015): wy € RY, vy = 0, my = 0,

Vyp1 = NVq + (1 — 71)vf(wt5 &)
My = Yomy_q + (1 — ’Yz)vf(wﬁ &)
\/q Ut

1—v m;+e’

Weypyp = W — 17

- m, is the moving average of square gradients.
- m, yields coordinate wise learning rates.

- Defaults v, = 0.9, v, = 0.999 and n = 10~3 perform well for DNNs.



Advantages of (Stochastic) Gradient-based Methods

- Effective even for n ~ 102 or d ~ 10'! (i.e. Large Language Models).
- Implicit regularization: good expected risk for complex model w/o &,.

- Early stopping, i.e. stop before convergence.
- SGD selects solution with minimal norm at convergence.

- Efficient and automatic V f(w; €) via backpropagation.
- Efficiency guarantees in terms of iterations/samples.



Advantages of (Stochastic) Gradient-based Methods

- Effective even for n ~ 102 or d ~ 10'! (i.e. Large Language Models).
- Implicit regularization: good expected risk for complex model w/o &,.

- Early stopping, i.e. stop before convergence.
- SGD selects solution with minimal norm at convergence.

- Efficient and automatic V f(w; €) via backpropagation.
- Efficiency guarantees in terms of iterations/samples.

Second-order methods, relying on V2 f(w; ), are more expensive and rarely used.



Efficiency of Gradient-based Methods - Assumptions

Let f: R? — R be differentiable on R¢:
- fis L-Lipschitz smooth with L > 0 if for every w,, w, € R?
IV f(wy) =V f(wy)] < Lw; —w,
- fis p-strongly convex with u > 0 (convex if u = 0) if for every w,, w, € R?
Fws) > Flwy) + VF(wy) T (wy —wy) + £ wy —wy .

Vf satisfies

E[VF(z;6)] = Vf(z), Var[Vf(z;€)] = E[|Vf(z;€) — E[VF(z; )] < o2



Efficiency of Gradient-based Methods - Optimality Measures

w* = arg min f(w)
weRY

Optimality Measures (e-accuracy):

- Strongly-Convex: Efw, —w*|? < e
- Convex: E[f(w,) — f(w*)] < e
- Non-convex: min,_,, E|V f(w,)[? <

20



Efficiency of Gradient-based Methods - Optimality Measures

w* = arg min f(w)
weRY

Optimality Measures (e-accuracy):
- Strongly-Convex: E|w, — w*||? < e
- Convex: E[f(w,) — f(w*)] <e
- Non-convex: min, ., E[|V f(w,)|* < ¢

How many iterations/samples needed?

20



Iteration Complexity for Lipschitz Smooth f

| Gb | GDMN | SGD
Strongly Convex | O(klog(e ™)) | O(v/klog(e™t)) | O(ke ™)
Convex O(e™) O(e™1/?) O(e7?)
non-Convex O(e1) O(eh) O(e7?)

# of iterations to reach e-optimality. xk = L/p with L and p smoothness and strong
convexity constants. GDMN is Nesterov momenutm

- For SGD f can be the empirical risk and also the expected risk.
- Stochastic Momentum or ADAM do not improve SGD rates.
- GDMN and SGD have matching lower bounds in all cases.

21



Bilevel Problems In Machine
Learning

22



Bilevel Problem Formulations

Bilevel Min-Min

w(\) := arg min g(w, \)

weRd

23



Bilevel Problem Formulations

Bilevel Min-Min Bilevel Min-Fixed-point
min_ (V) = Bw(}), ) min_ f(N) = Bw(}), )
w(\) := arg min g(w, \) w(A) == &(w(A), \)

weRd

23



Bilevel Problem Formulations

Bilevel Min-Min Bilevel Min-Fixed-point
min_ (V) = Bw(}), ) min_ f(N) = Bw(}), )
w(\) := arg min g(w, \) w(A) == &(w(A), \)

weR?

- w(A) is unique.

- If g is convex and differentiable Min-Fixed-point is more general:

O(w,\) =w—Vyg(w,\)

23



Applications in Machine Learning

e

Source: S.Ravi, H. Larochelle (2016).

Min-Min:
- Hyperparameter optimization
(learn the kernel/regularization, ...).
- Meta-learning.
- Data poisoning attacks.

- Others 24



Applications in Machine Learning

Re 4 o o . ‘%
":{ﬂ-'-él;i o S
- {5'5)_"3 aE Input Output

Source: snap.stanford.edu/proj/embeddings-www
Source: S.Ravi, H. Larochelle (2016).

Min-Min: Min-Fixed-point:

- Hyperparameter optimization

o - Some Graph and Recurrent NNs.
(learn the kernel/regularization, ...).

- Equilibrium Models.

- Meta-learning. -
. ers

- Data poisoning attacks.
- Others 2



Hyperparameter Optimization (HPO)

Empirical Risk Minimization:

min — Z £(h($,w,A),y)+73A(w)
(z,y)eD

Training risk

- X are the hyperparameters and w are the parameters of the model A.
- hyperparameters:

- Discrete: # layers, choice of kernel function.
- Continuous: regularization strength (R, (w) = AJw[), kernel parameters.

25



Hyperparameter Optimization (HPO)

Empirical Risk Minimization:

min — Z £(h($,w,A),y)+73A(w)
(z,y)eD

Training risk

- X are the hyperparameters and w are the parameters of the model A.
- hyperparameters:

- Discrete: # layers, choice of kernel function.
- Continuous: regularization strength (R, (w) = AJw[), kernel parameters.

- How can we set \?

25



Hyperparameter Optimization (HPO)

Validation risk

Z £(h(z;w(\), ), )

z,Y)€

(/\)—argmm— Z L(h(z;w, A),y) +Ry\(w)

n
wew (z,y)€D

Training risk

- D ~ p™ is the training set, D ~ p" is the validation set.
- Train-validation split can be replaced by K-fold cross-validation.
- Possible overfitting on D’ = w(\*) is finally tested on hold-out test set D”.

26



Example: Optimizing the Regularization Hyperparameters in Ridge Regression

o1
min

min = | X'w()) — y'I3

1 1
w(\) = arg min } £(w, \) := %HXw —y|3 + §wTB()\)w

weR s
Regularization
cw(\) =n(AXTX +B(\) Xy
- ifxeR,,, B(A) = AI we have standard ridge regression.
- if A € RY, B()\) = diag(\) we are selecting/rescaling the features.

- if square-loss is replaced by e.g. cross-entropy, w(A) has no closed form.
- Regularization term could be non-smooth (e.g. lasso or elastic net)

27



Data-Poisoning Attacks (DPA)

Test Phase

PoisoninUA -
e Training Phase
Samples (¥] rami ¢

Reducing Accuracy

|
|
|
|
|
|
Training :
|
|
|
|

Traini Deployed ML-based T t
e » BadModel |———— ~base o MTES
Data Service Misclassification

Input Trigger Backdoor

Source: Liu, Ximeng, et al. "Privacy and security issues in deep learning: A survey.” IEEE Access 9 (2020): 4566-4593.
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Example: DPA to reduce accuracy

max = 57 L(h(mw(N),y)

CRnxd n/
AEACR (z.y)eD’

w(\) = argmln— ZL‘ T + A w),y;) + Rg(w)
weRdxe
- A, =B,(0,6) = {); e R : | )], < €} for poisoned samples.
- Smaller e and # of poisoned samples = lower chances to be detected.

- Possible overfitting on D’ = w(\) is also tested on hold-out test set D”.

Biggio, Battista, et al. "Poisoning attacks against support vector machines” ICML 2012.

Munoz-Gonzaélez, Luis, et al. "Towards poisoning of deep learning algorithms with back-gradient optimization.” ACM workshop on artificial intelligence
and security. 2017.

29



Meta-learning (MTL): learn meta-model working well on new related tasks

Dtcst
Meta-
Train
7::::/11 train
quf
.
. .
L .
1 2
v J 8O - BEaE l S
Test . o
Dmeta—test Ivmn taat
' o
L .

Source: S.Ravi, H. Larochelle (2016).
30



Example: Meta-training a shared meta-representation

min Y LS s ey

AERT Mygeks = ‘ test’ ,y)eD:

test

Z ’Ctram( T¢(x7)\)7y)

traln‘ (z,y)eD?

train

w(\), = arg min
( )1 1§E[R‘i |D

- ¢ is the meta-representation (can be a neural network) with parameters .
w(); is the linear model adapted to task i (to Df_. ).

* Myeks SEParate lower-level problems.

- A" is then tested on hold-out tasks (meta-test).

Franceschi, Luca, et al. "Bilevel programming for hyperparameter optimization and meta-learning” ICML 2018.
Bertinetto, L., et al. "Meta-learning with differentiable closed-form solvers.” ICLR 2019.

Lee, K, et al. "Meta-learning with differentiable convex optimization.” CVPR 2019. APA 31
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Example: Deep Equilibrium Models (Bai et al. NeurIPS 2019)

d

do

Explicit Layer

Tr —

2y = hy(2)

>

f(sz y)

zp, = hy(zp_4)

— 2r — (21, y)

Backprop



Example: Deep Equilibrium Models (Bai et al. NeurIPS 2019)

Explicit Layer

T — 21 = ho(T) Bl 22 = hy(21) zp, = hy(zp 1) — 2L — (21, y)

4 0(z,
& (21 9) Backprop

Equilibrium Layer

x 2t = gp(2*,x) —— 2* — L(2*,y)

def( 25, y) q

Implicit Backprop

33



Example: Deep Equilibrium Models (Bai et al. NeurIPS 2019)

Explicit Layer

T —H 21 = hy(T) Pl 29 = hy(2) zr, = hg(zp_1) — 2L — (2, )

d

e ACTR

a9 (21 9) Backprop

Equilibrium Layer
T 2t = gp(2*,x) —— 2* — L(2*,y)
%6(2*7?” q
Implicit Backprop
Eg. hy(z) =oc(Wz +b), 0 =(W,b), 99(2,2) = o(Wyz + Waz +b), 6 = (W, Wy, b)

33



Equilibrium Models: Bilevel Formulation

L( 0), 0) = 0
Bl;Iullg[R” Z U} Zl‘ ) Z(‘T7 ) 99(Z<x7 ),l‘)

- Upper-level is ERM on D. (0*,w*) is tested on a hold out set D’.
- One lower-level fixed-point problem per training example (z, y).

- Structure resembles meta-learning: separable lower-level.

34



- Large scale: large # of examples, # of parameters or # of hyperparameters.

- Simple or no constraints at the lower-level:
- ERM is usually an unconstrained minimization problem (W = R9).

- fis not the final objective (overfitting). Final test on hold-out data.
- Analysis often assumes existence and uniqueness of the lower-level solution.

35



Summary of Part 1

Supervised Learning

- Many machine learning problems fit in supervised Learning.
- No access to data distribution = learning = ERM.
- ERM requires efficient optimization algorithms (SGD, SGMD, ADAM).

Bilevel Applications

- Several machine-learning problems are bilevel problems.

- Large scale, simple/no constraints, possible overfitting.

36



Automatic Differentiation

37



Differentiating Complex Functions

Let f: R? — R™ be a vector-valued function

and assume we have a computer program that outputs f(z) from the input «:

- f can be a neural network with several layers.

- f(z) can be the output of an optimization algorithm.

The analytic expression for f might be complicated and its derivatives even more.

How can we efficiently differentiate f?

38



Symbolic Differentiation

Apply the chain rule to the symbolic expression of f (e.g. Mathematica).

Issues:

- Resulting expression might be complex and contain redundant parts.

- It doesn’t tell you how to compute the derivative efficiently.

Problematic Example:

d
H% T1dg Vi) :H:Cj:xl'"xiflxz#l'"xd

i=1 JF#i

39



Finite Differences

Let e > 0, and compute the directional of f(z) along the direction h € R? as:

fatd)=f@)  feteh) = fz e
€ 2¢

- Small e = cancellation error due to finite precision arithmetic.
- Large e = truncation error: we are further from the derivative definition.
- Can have high error even with optimal e.

- Full derivative requires at least d function evaluations.

40



Automatic Differentiation (AD) (Griewank and Walther, 2008)

Idea: Use the evaluation program of f to derive a program for its derivative.

Advantages:

- Exact derivative in infinite precision (No truncation error).

- Derivative program generated automatically.

- f(z) e R = Time(Vf(z)) = O(Time(f(x))) for reverse mode AD.
- Open source implementations (Pytorch, JAX, Tensorflow, ...).

Disadvantages:

- Implementation overhead: might be slow for simple functions.
- Reverse mode AD can have a high memory cost.

41



Computational Graph

vl = *szvg = ] * @3

o ¢

Graph for f(x l 11 %5 Y (Vi_1, U_y) = V1 * Tyyy.

- Input variables: (vy,v_q1,...,v,_g) = (1, Tq, ..., T4)-
- Auxiliary variables: v, = 9, (u;), i > 0.
* u; = (v;),<; are the parent nodes of v;.

- b, are primitive operations (e.g. # + y,x * y, v 1, Az + b).
42



Forward Mode and Reverse Mode AD

Let the Jacobian of f: R? — R™ in z be

o fi(z) - O4f1(2)
Df(x) — c [Rmxd

Opfm(@) - Ofpn ()
AD provides efficient ways to compute the Jacobian-vector products
Df(x) 4 (Forward AD), Df(x)"y (Reverse AD).
where & € R? and y € R™.
Relies on efficient Jacobian-vector products for the primitives:

D, (u;) u; (Forward AD), D, (u;)" v,

(2

(Reverse AD).

43



Evaluation Program of f(x)

—

(V1_gy -, Vg) =T
:fori=1,...,1do

v; = ¥, (u;) € R for simplicity
end for
return (v,_,,,...,v;) "

CARE I A

Let w; == (vy_g, -, 0;) "

w; = gi(w;_,) = ( ;(ul) ) - ( w;il ) Vie{l,..,1}

The program can be seen as computing from right to left

’

f(z) :P°91°91—1°“'°91(ﬂ) Pw, = (vl—mv"'?vl)T

x

44



Forward Mode AD

The chain rule on f(x) = Pg,(g,_1 (- g1 (wy) --+)) yields

Df(x)i = PDgy(w;_4) -+ Dgg(w;)Dgy (wy) @

Forward mode AD computes fori =1, ...,1

wi = Dgi(wi—l)wi—l = (wi—17®i)T

g; stucture = &, = Dup,(u,)is; = > by (),

=1

where (0;_g, ..., 0y) := (1, ..., &4) and a; = (9;) <

45



Reverse Mode AD

The chain rule on f(x) = Pg,(g,_; (- g1 (wg) --+)) yields
Df(x)'g = Dgy(wg)" - Dg;_1(wi_) " Dgy(w;_q)" wy
Py
Adjoint variables: (v, 4, ... v;), With w; = (v;_4, ... v;) and u; = (v;) ;.
Reverse Mode AD first sets w;, = Py = (0,...,0, 91, Uy )-
Then updates the adjoint variables by computing for:=1,...,1
W;_y = Dg;(w;_1)"w
g; structure = u, = u; + Dy, (u;

)
= ;=9 +0;;(w;)v; Vi<

46



Algorithm Forward AD

Input: z, & € R?

Output: f(z), Df(x) &
1 (Vgyeee yU1_g) = T, (Vgy e, V1_g) = &
2. fori=1,...,1do #forward pass
3 v; = P;(ug), ¥ = Dy (w;)
4. end for
5. return (v, -5 7)), (O_pmy oo 5 0p)

Where u; = (v;) < @ = (95) j<;-

47



Algorithm Forward AD

Input: z, & € R?
Output: f(z), Df(x) &

1 (Vgyeee yU1_g) = T, (Vgy e, V1_g) = &
2. fori=1,...,1do #forward pass

3:
4
5

v; = ¥ (u,), 0 = D, (u;) U,

. end for
. return (v,_,,, ...

7”[)1 (i}lfww L) 2.7l>

(i}j)j<i'

Algorithm Reverse AD

Input: z € RY, 5 € R™
Output: f(z), Df(z)" 5

(Vgy e, U1_g) = T
(U1_gy o s0) = (0,000, 0, Y1y oo s Up)
fori:=1,...,1do # forward pass
v; = ¥;(w;)
end for
fori=1,...,1do # backward pass
u; =1, + Dy, (u;) "
end for

return (v,_,,, -, v;), (V1_g, -, Tg)

(2

J J

47



Time and Space Complexity

For each 1, (u;), only one Jacobian-vector product of ¢, is computed

+  Time(Dy;(u;)i;) = O(Time(;(y;))) = Time(Dy; (u;)Tv;) =

48



Time and Space Complexity

For each 1, (u;), only one Jacobian-vector product of ¢, is computed

+  Time(Dy;(u;)i;) = O(Time(;(y;))) = Time(Dy; (u;)Tv;) =

Time Complexity

Time(Df(z)#) = O(Time(f(z))) = Time(Df(z) y)
Cheap gradient: f(z) e R,y =1 = Time(Vf(x)) = O(Time(f(z)))
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Time and Space Complexity

For each 1, (u;), only one Jacobian-vector product of ¢, is computed

+  Time(Dy;(u;)i;) = O(Time(;(y;))) = Time(Dy; (u;)Tv;) =

Time Complexity

Time(Df(z)x) = O(Time(f(z))) = Time(Df(z)"y)
Cheap gradient: f(z) e R,y =1 = Time(Vf(z)) = O(Time(f(x)))

Space Complexity

- Mem(Df(z)#) = O(Mem(f(x))) (delete unused v;-s).
- Mem(Df(z)"y) = O(l) (needs to store all v;-s).

48



Checkpointing and Second Order Derivatives

Checkpointing. Define higher-level primitives by composing primitives:

- Saves memory for reverse AD by reducing the number of auxiliary variables.
- Increases time since reverse mode AD is applied recursively.

49



Checkpointing and Second Order Derivatives

Checkpointing. Define higher-level primitives by composing primitives:

- Saves memory for reverse AD by reducing the number of auxiliary variables
- Increases time since reverse mode AD is applied recursively.

Hessian-vector products. f: R — R

X

)
F: (1 )T v (forward) (2) 9, (z + Vf(z)v) = V2f(z) v (reverse)
R: (1 ) (reverse) (2) 9, (z = Vf(x ))v*VQf( ) v (forward)

- Time(V )’

f=

R: (1) Vf(x) (reverse) (2) 0, (z + Vf(z)T v = V2f( v (reverse)
V(
V(

IAY
IAY (
(V v) = O(Time(f(x))), Mem(RR) > Mem(RF) > Mem(FR).

49



Checkpointing and Second Order Derivatives

Checkpointing. Define higher-level primitives by composing primitives:

- Saves memory for reverse AD by reducing the number of auxiliary variables
- Increases time since reverse mode AD is applied recursively.

Hessian-vector products. f: R — R

R: (1) Vf(x) (reverse) (2) 0, (z + Vf(z)T v = V2f( ) v (reverse)
v (forward) (2) 9, (z + Vf(z)v) = V2f(z) v (reverse)

F:(1) Vf(z)"
R: (1) Vf(x) (reverse) (2) 0, (z — Vf(x)) v = V2f( ) v (forward)
. Tlme(V2 f(x)Tv) = O(Time(f(x))), Mem(RR) > Mem(RF) > Mem(FR).

f defined implicitly? (Griewank and Walther, 2008, Chap. 15) and hypergradients.
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The Hypergradient
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Strategies to Solve the Bilevel Problem

min f()\) = E(w(\),\) (UL)

AEACR™
Min-Fixed-point Min-Min
w(A) == ®(w(A),\) or w()) := argmin g(w, \) (LL)

weR4

How can we solve it?

- Black-box methods (random/grid search, Bayesian optimization, ...).
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Strategies to Solve the Bilevel Problem

min f()\) = E(w(\),\) (UL)

AEACR™
Min-Fixed-point Min-Min
w()\) 3= <I>(w(/\),)\)l or lw()\) = arg ming(w,)\)l (LL)
weRd

How can we solve it?

- Black-box methods (random/grid search, Bayesian optimization, ...).

- Gradient-based methods exploiting the hypergradient V f(\).
Work best when m is large and f is smooth.
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Strategies to Solve the Bilevel Problem

min f()\) = E(w(\),\) (UL)

AEACR™
Min-Fixed-point Min-Min
w()\) 3= <I>(w(/\),)\)l or lw()\) = arg ming(w,)\)l (LL)
weRd

How can we solve it?

- Black-box methods (random/grid search, Bayesian optimization, ...).

- Gradient-based methods exploiting the hypergradient V f(\).
Work best when m is large and f is smooth.

- Value-function approaches (no need for V£())).
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Differentiability of f

Assumptions

- E, ® (or V,g) are cont. differentiable in an open set containing A x R%.
- I —09,®(w(N), ) (or Vig(w(N), \)) is invertible for every X € A.

— f is differentiable thanks to the implicit function theorem.

From the chain rule we obtain

d

VA = an

E(w(A\), ) = VoE(w(N), A) + w' (\) TV, E(w(N), A)
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Min-Fixed-point w’()\) Derivation

J/Diﬁerentiate both sides using the chain rule
w'(A) = 91 P(w(A), Mw'(A) + 0,2 (w(A), A)

J/Rearrange terms

(I =0, @(w(A), A))w'(A) = 0, @(w(A), A)

J/(I — 8,8(w(\), \)) is invertible

N

w'(A) = (I = 0, 2(w(X), N)) 719, @(w()), A)
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Min-Min w’(\) Derivation

w(\) = argmin, _p, g(w, \)

\J( g is differentiable in w

0 =Vig9(w(X), )

N

J{ Differentiating both sides using the chain rule

0 = Vig(w(X), Nw'(A) + Vipg(w(A), A)

w'(A)

J{ V2g(w( ) Is invertible

:—V%g( (A),)\) lvlzg(w()‘)aA)
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An Implicit Expression for the hypergradient

V(A = VoE(w(A), X)) +w' (N TViE(w(N), )

w'(A) = (I = 0, 2(w(X), 1)) 719, 2(w(A), A).
w' (X)) = =V2g(w(\), \) "IV 59(w(N), )

Min-Min w’(\) = Min-Fixed-point w’(\) + ®(w,\) = w — V;g(w, \).
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An Implicit Expression for the hypergradient

V(A = VoE(w(A), X)) +w' (N TViE(w(N), )

w'(A) = (I = 0, 2(w(X), 1)) 719, 2(w(A), A).
w' (X)) = =V2g(w(\), \) "IV 59(w(N), )

Min-Min w’(\) = Min-Fixed-point w’(\) + ®(w,\) = w — V;g(w, \).

V) = VoE(w(M),\) +9,@(w(M), )T (I — 8;2(w(N),\)T) " Vi E(w()),\)
n nxd dxd d
VIA) = VoE(w(N), ) = Vipg(w(N), \)T Vig(w(X),\) ! ViE(w()\),\)
n nxd dxd d
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An Implicit Expression for the hypergradient

V(A = VoE(w(A), X)) +w' (N TViE(w(N), )

w'(A) = (I = 0, 2(w(X), 1)) 719, 2(w(A), A).
w' (X)) = =V2g(w(\), \) "IV 59(w(N), )

Min-Min w’(\) = Min-Fixed-point w’(\) + ®(w,\) = w — V;g(w, \).

VA = VaE(w(X),A) + 0,2(w(A), )T(I = 0, 2(w(A), \) )™ V, E(w(A), A)

n nxd dxd d
VIA) = VoE(w(N), ) = Vipg(w(N), \)T Vig(w(X),\) ! ViE(w()\),\)
n nxd dxd d

With d or m large, V f()\) can be expensive to compute even when w(\) Is given
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Hypegradient for the Ridge Regression Hyperparameter

1
2n/

, ) 1 1
E(w,\) = oS|I X w—yI?, 9w, X) = | Xw —y|* + A Jw]?,
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Hypegradient for the Ridge Regression Hyperparameter

1

E(w,\) = Sy

1 1
X'w—y|2 ) = — [ Xw — y|? + =\ Jw]?
1X'w—y'|%  glw, ) Qn” w—y 9 lw]|*,

1

ViE(w,\) = ?X’T(X/w—y/), VyE(w, ) =0,
1

Vig(w,\) = EXT(Xw —y)+ \w

1
Vig(w,\) = —XTX + A, V9w ) =w
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Hypegradient for the Ridge Regression Hyperparameter

1

E(w,\) = Sy

1 1
X'w—y|2 A) = = Xw—y|? + =\ Ju|?
1X'w—y'|%  glw, ) Qn” w—y 9 lw]|*,

1

V., E(w,\) = ?X’T(X’w—y’), VyE(w, ) =0,
1

Vig(w,\) = EXT(Xw —y)+ \w

1
Vig(w,\) = —XTX + A, V9w ) =w

1

V) = —w(\)T (%XTX +a1) %X’T(X’w()\) —y)

w(\) = n(%XTX + )\I>_1Xy
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Discussion on The Assumptions

Uniqueness of w(\):

- If g(-, \) is strongly convex: many L2-regularized problems.
- ®(-,\) is a contraction: GD on strongly convex Lip. smooth objectives.

- Not true for Overparametrized models and NNs without regularization.
Differentiability of £, ®, and twice for g: smooth loss, regularizer and model.
Invertibility of 7 — 9, ®(w(X), \) or Vig(w(\), \):

- When @(-, \) is a differentiable contraction near w(\).

- When g(-, A) is twice differentiable, strongly convex, Lip. smooth near w(\).
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Hypergradient Approximation
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Approximating the Lower-level

LL solution w()\) can be expensive to evaluate accurately (e.g. ERM with large n)

Idea: Replace w(\) with

wy(A) := Ay (wp, A), lim w,;(A) = w(X),

t—o0

A, : REx A — R?is the iterative lower-level solver which starts from wg () = w,.
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Approximating the Lower-level

LL solution w()\) can be expensive to evaluate accurately (e.g. ERM with large n)
Idea: Replace w(\) with
wt(A> = At<w07 )‘>7 thm wt<)‘) = w()‘>7
—00
A, : R4 x A — R? is the iterative lower-level solver which starts from wq(A\) = w,.

Examples:

(FP) wy(A) = ®(w;_1(A), A)
(GD) wy(A) = w1 (A) =0, Vig(w_1(A), A)

or SGD, SGMD, ADAM, ...
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Approximate Bilevel Problem

Exact Bilevel Approximate Bilevel
min f(0) = B@(\),\) = minfy() = B(w,(V),)
w(A) = @(w(A), A) wi(A) = Ay(wo, A)

- E, A, differentiable = f, differentiable.

- Mild assumptions: argminf,(\) — argminf()\) (Franceschi et al., 2018).
AeA =00 eA

- Allows to optimize solver’s parameters like learning rate, ¢ or wy,.

- They are both valid frameworks for machine learning problems.
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Iterative Differentiation (ITD)

1wy (A) = Ay (wy, \), where A, differentiable

2. f(A) = E(w,(A), A)
3. Get V£,(\) efficiently using backpropagation (reverse mode AD).
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Iterative Differentiation (ITD)

1wy (A) = Ay (wy, \), where A, differentiable

2. f(A) = E(w,(A), A)
3. Get V£,(\) efficiently using backpropagation (reverse mode AD).

- Also called Unrolling: the compuation in .4, need to be saved in memory.
- Checkpoining: store only (w;()))t_, for the backward pass.
- if A € R™ with small m, might use forward mode AD to save memory.
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Iterative Differentiation In Pytorch

= prandn(...,
zeros(...,

1l_alg(t, w0, lmbd, phi)

E(wt, lmbd)
.backward()




AID Preliminaries: The Linear System

Vi) = VaE(w(A),A) + 0,2(w(A), \)T (1 = 0, 2(w(A), )T) 'V, E(w(}), A)
v(w(X), )

where v(w, \) is the solution of the linear system

I—0,9(w,\)"z=V,E(w,\)
AgeRdxd I beR? I

Recall d is the number of lower-level parameters
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Solving the Linear System

v(w, \) can be expensive to compute accurately for large d:

- storing A costs ©(d?) in memory, which might be prohibitive
- with A in memory: time is usually O(d?) (product ATv is O(d?)).
Idea: Replace v(w, \) with
Uk<)‘> = Bk(v()vwv A)a khm Uk()‘) = U(wa >‘)
— 00

B,. is a solver for the linear system starting from v,: E.g. Conjugate Gradient.
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Approximate Implict Differentiation (AID)

7~

1w, ()

‘/Zt(wm A)

2. v (A) = By (vg, ws(N), N). B, is a solver for the linear system

(I = 01 2(w, (M), \) v = V, E(w, (A), A)

3. VF(N) = VaB(wy (W), A) + 8,8 (w, (1), 3) o ()
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Approximate Implict Differentiation (AID)

7~

1wy (A) = Ay(wp, A)
2. v (A) = By (vg, ws(N), N). B, is a solver for the linear system

(I = 01 2(w, (M), \) v = V, E(w, (A), A)

3. VF(N) = VaB(wy (W), A) + 8,8 (w, (1), 3) o ()

- Only requires to save the last iterate w, ().
- B, is efficient if uses AD for the Jacobian-vector products

Oy ®(w; (), A) v

— Time(d,®(w,(\), \)Tv) = O(Time(®(w,(\), \))).
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from torch.auvtograd import grad

wt = 11_alg(t, w0, lmbd, phi)

wt = wt.detach().requires_grad_()

grad_1_E, grad_2_E = grad( =E(wt, lmbd), =[wt, lmbd]l)
w_up = phi(wt, lmbd)

def jac_1_phi_v_f(v):

return grad(w_up, =v,

= 1s_alg(k, vO, jac_1_phi_v_f, grad_1_E)

jac_2_phi_vk = grad(w_up, =vk, =lmbd) [0]
hypergrad = grad_2_E + jac_2_phi_vk




Comparison between ITD and AID

ITD AID

- lgnores the bilevel structure. - Can use any lower-level solver.
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Comparison between ITD and AID

ITD AID
- lgnores the bilevel structure. - Can use any lower-level solver.
- Cost in time: O(Time(f,(\))) - Costin time (k = t): O(Time(f,(\))).
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Comparison between ITD and AID

ITD AID
- lgnores the bilevel structure. - Can use any lower-level solver.
- Cost in time: O(Time(f,(\))) - Costin time (k = t): O(Time(f,(\))).
- Cost in memory: O(td). - Cost in memory: O(d).
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ITD and AID in Applications: Popular Works

Work UL variable A LL variable w
o Maclaurin et al. (2015) lr, mu NN weights
HPO Franceschi et al. (2017) lr, mu, others NN weights
AID  Pedregosa (2016) reg params linear params
ITD MAML (Finn et al,, 2017) NN init. NN weights
MTL Franceschi et al. (2018) NN representation last linear layer
AID iIMAML (Rajeswaran et al,, 2019) biased reg NN weights
Lee et al. (2019); Bertinetto et al. (2019) NN representation last layer
DPA ITD Mufoz-Gonzalez et al. (2017) examples noise NN weights
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https://github.com/prolearner/hypertorch
https://github.com/leopard-ai/betty
https://github.com/google/jaxopt

ITD and AID in Applications: Popular Works

Work UL variable A LL variable w
o Maclaurin et al. (2015) lr, mu NN weights
HPO Franceschi et al. (2017) lr, mu, others NN weights
AID  Pedregosa (2016) reg params linear params
ITD MAML (Finn et al,, 2017) NN init. NN weights
MTL Franceschi et al. (2018) NN representation last linear layer
AID iIMAML (Rajeswaran et al,, 2019) biased reg NN weights
Lee et al. (2019); Bertinetto et al. (2019) NN representation last layer
DPA ITD Mufoz-Gonzalez et al. (2017) examples noise NN weights
ITD/AID Code:

(Grazzi et al, 2020) https://github.com/prolearner/hypertorch
(Choe et al, 2023) https://github.com/leopard-ai/betty
(Blondel et al,, 2021) https://github.com/google/jaxopt 68


https://github.com/prolearner/hypertorch
https://github.com/leopard-ai/betty
https://github.com/google/jaxopt

Summary - Part 2

Automatic Differentiation

- Efficient program for f(x) = efficient programs for df(x)z, 0f(z)"y
- Forward mode AD: Little overhead, fast df(z) if z € R.
- Reverse mode AD (backpropagation): fast V f(z) with high memory cost.

Hypergradient Approximation

- ITD: backpropagates over t steps of the LL solver.

- AID: solves the LS in the implicit expression of V f exploiting (reverse) AD for
fast Jacobian-vector products.

- Both efficient but ITD has a memory cost proportional to .
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Questions on AID and ITD

- Can we control the approximation error of the hypergradient?
- Convergence guarantees on the bilevel problem?

- Stochastic approaches?
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Error Rates for AID and ITD
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Preliminary on Norms

Forany d,m € N, v € R¢, A € Rm*¢

- |v|, | Av| are two vector norms.

- | A| denotes the corresponding operator norm:

|4u] |

]

| Al = sup{ u#0,u€ [Rd}

= sub-multiplicativity: |Av| < ||A]|v| for any v € R?
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The Contraction Assumption

Assumption
LL fixed point map @(-, \) : R — R? is a ¢, -contraction, i.e. for all w,,w, € R?

[@(wy, A) = D(wy, M| < gawy —wyl,  gx <1,

or equivalently, if ® is differentiable |0, ®(w, \)|| < g, <1, Yw € R%
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The Contraction Assumption

Assumption
LL fixed point map @(-, \) : R — R? is a ¢, -contraction, i.e. for all w,,w, € R?

1wy, A) — @(wg, M| < gy [lwy — wsl, a <1,
or equivalently, if ® is differentiable |0, ®(w, \)|| < g, <1, Yw € R%

= ®(-,\) has a unique fixed point w()\) (Banach, 1922).
= lower-level linear convergence for w,(A\) = ®(w,_;(A), A) :

lw(A) = w, (M < giw(X) —we(N)]
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The Contraction Assumption

Assumption
LL fixed point map @(-, \) : R — R? is a ¢, -contraction, i.e. for all w,,w, € R?

1wy, A) — @(wg, M| < gy [lwy — wsl, a <1,
or equivalently, if ® is differentiable |0, ®(w, \)|| < g, <1, Yw € R%

= ®(-,\) has a unique fixed point w()\) (Banach, 1922).
= lower-level linear convergence for w,(A\) = ®(w,_;(A), A) :

lw(A) = w, (M < giw(X) —we(N)]

Proof step:  [w(A) — w, (M) = [[@(w(A), A) = @(w,1(A), V]| < gr[wA) — w1 (A)]
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Examples of Contractions

Equilibrium models:

®(w, (A, B,c)) = tanh(Aw + Bz + ¢), |4 <1
)

Bilevel Min-Min with g¢(-,\) is u-strongly convex and L-Lipschitz smooth:

—_
LL objective

- Gradient Descent reformulation:

- Heavy-ball momentum reformulation when g(-, \) is quadratic.
= w contains also the momentum variable.
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ITD Error

We want to control the hypergradient approximation error |V f(\) — V f,(A)].
VIA) = VaE(w(X),A) + w'(X) TV, E(w(A), A)
w'(A) = 0, @(w(A), Nw'(A) + 0, @(w(A), A).

V f,(X\) is given by ITD with the LL solver

w,(N) = B(w,_; (), N),  wy(A) = 0.

Using the chain rule on f,(\) = E(w,(\), \) we get

V(X)) = VoE(w, (M), A) +wi(A) TV E(w, (M), A)
wi(A) = 01 P(wy_1 (), M)wi_1(A) + 0@ (w1 (A), A).
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Useful Proof Step

Goal: Upper bound |Q — Q||
with Q = A+ BC, Q' = A’ + B’C” with all quantities being vectors or matrices.

IQ—Q'| =|A— A"+ BC FBC' — B'C|
Triangle inequality = <|A—A'|+|BC— BC'|+|BC" — B'C’|
Sub-multiplicativity = < A — 4’| + |B||C — C’| + |C’||B — B/|.

Then it only remains to bound | X — X’|| with X € {A, B,CY}, | B| and |C’||.
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ITD Error Rate - Bounding |V f(\) — Vf,(A\)]

Vi) = VaE(w),A) +w' (A)T Vi E(w(M), V),

—_— —— ——

Q A B @
V(A = VoE(w, (M), \) +wi(A)T Vi E(w(A), A)
Q/ A/ B/ C/

We need to bound |B|, [C’] and | X — X’|| with X € {A, B,C}:

- |lw’ ()| is constant since A is fixed.
- wy(A) = 0+ contraction = |w,(N)| < 2|w(N)| = |V E(w, (M), A)| bounded.
- V,E(-,\) Lg-Lipschitz + contraction =

IViE(w(A), A) = ViE(w, (A), ]| < Lglw(A) — w, (M) < Lpgy lw(M)]

- Next we bound [Jw;(A)—w’(A)|?
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ITD Error Rate - Bounding |w}(\) — w(\)]

wi(A) = 0 P(wy_1 (M), A) + 9, P(w,_1 (A), M) wi_1 (V)

Q A B I C
W (V) = 0, 2(w(N), \) + 1 B(w(N), ) w' ()
Q/ A/ B/ C/

We need to bound |B|, [C’] and | X — X’|| with X € {A, B,C}:
- |lw’ ()| is constant since \ is fixed.
- ®(-,\) is a differentiable g,-contraction = [0, ®(w,_1(N\),\)]| < gy
© 9;®(-, A) Lipschitz = [0;®(w(A), A) — 0,2 (w(A), A)[| < Lg |w, (A) —w(N)].

- we unroll the recursion to control |w]_; () —w’ (M|
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ITD Error Rate - Unrolling ||w;(\) — w’(A\)||

Denote A, = |w,(A) —w(A)[, A = [lwy(A) —w (M), ey = Le(w (V)] + 1)
Ap<e A+ A

<A+ el o+ a3AL,

t
<o G A+l V)

=1
t
<> T T gl V] (A < g5IA)
=1
<t ey JwN)] + giflw’ V)
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ITD Error Rate

If &(-,\) is a gy-contraction and VE(-, X), 9;®(-, A) are Lipschitz, then ITD with
w,(A) = P(w;_q1, A), wy(N) = 0 satisfies

IV£i(XN) = VE] < (,31()\) n Cqu

t+ea(N)) db,
A

ITD converges linearly to V f()) with rate smaller than ¢.
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AID Error Rate

We want to control the hypergradient approximation error |V f(A) — Vf(\)]
VI = VayE(w(X), A) + 9,2(w(A), A) Tw(N),
v(d) = (I = 9, 2(w(N), )T) IV E(w(N), A)
Recall that for AID:
V) = VaB(wy(A), A) + 0,2(wy(A), A) "o (M),
w,(A) Is Is the output after ¢ steps of the LL solver.
v, (A) Is the output after k steps of the LS solver for the LS with solution
B(A) = (I = 0, 2(w, (A), ) )TV, E(wy (A), )
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AID Error Rate - Part 2

Using similar techniques as for ITD we get

Assume that V,E and 9,® are Lipschitz, ®(-, \) is a g,-contraction and

Jw,(A) —wNI < pA@)w(N)] (LL rate)
[o,(X) = 8N < oz (R)[B(A)] (LS rate)

ca(N)

IVFN) = V| < (01@) t1- ™

)or(t) + es(N)ra (k).
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Solving the Linear System

Fixed point method (FP)

Let vy(A) = 0, assume w,(A), V, E(w,(X), ) given and compute
vp(A) = (v _1 (), A) := 9, (w, (), A) "o 1 (A) + Vi E(wy(A), A)

Efficient evaluation with AD: only one jacobian-vector product per step.
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Solving the Linear System

Fixed point method (FP)

Let vy(A) = 0, assume w,(A), V, E(w,(X), ) given and compute
vp(A) = (v _1 (), A) := 9, (w, (), A) "o 1 (A) + Vi E(wy(A), A)

Efficient evaluation with AD: only one jacobian-vector product per step.

U(-,\) is an affine map and when ®(-, \) is a ¢,-contraction:

- Is a g,-contraction since [0, ¥ (v, \)| = [0;P(w,(A), N)| < g,.
- Its fixed point is 9(\)
- = linear convergence: [5(\) — v, ()] < g¥[5(X) — vo(N)|
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Solving the Linear System - Part 2

I—8,3(w,(\), ) @ = V, E(w,(A), })

A€Rdxd beR?

Conjugate Gradient (CG)

- A needs to be symmetric positive-definite (Bilevel Min-Min).
- Only one matrix-vector (in our case Jacobian-vector) product per step.
- Converges exactly in d iterations.

« Converges linearly with rate p§ < ¢%
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Refined Analysis for the Fixed Point Method

Let ug(A) := 0 uy(A) := 0; P(w, (), Nug_q (A) + 05P(w,(A), A) and note that
0y (wy (), A) "y, (A) = ug(A) 'V E(w, (M), A)

Proof Let A = 8,®(w,(\),\)T, B = 8,®(w,(\),\)T, ¢ = V,E(w,(\), \)

k
v (A) = Bug_1(\) + ¢ = BFyg(N) + Z Be = B lc
=1 i

k
= =1
ul (M) =u_ (M)B+A=Bu](M\)+A4) B l=4) B
1=1 =1
k
Therefore  Av,(A\) =AY Bi~le=u/(Mc

i=1
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Refined Analysis for the Fixed Point Method - Part 2

Denote A = |w’(A) — uy(N)

Ay = [w(d) —wy(A)

, e = Lo ([’ (M) +1)

AL <A+ Ay

k
< gD, + gk lw (V)
=1

k
<Y d ey + gElw' (V)

exlwN] + gilw (V)
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AID Fixed Point and Conjugate gradient Rates

If ®(-, \) is a g,-contraction and VE(-, A), 9,®(-, A) are Lipschitz, and set the LL

solver to w,(\) = ®(w,_;, A), wy(A) =0, then
1— qf{
1 —aqy

(AID-FP) V£ () = VIO < (e(N) + oV 7—2 )k + e5(N)af-

Moreover, when 9, ®(w, (), A) is symmetric,

(AID-CG)  [VF(N) = VNI < (V) + T
where p, < g, .
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Which method has the best approximation error?

ITD = O(tq}), AID-FP =0(q} +4}), AID-CG = O(g} + p})-

- ITD, AID-CG and AID-FP converge linearly (in ¢t and k) to V().
- AID-FP bound < ITD bound for every ¢, when k = t.
- AID-CG bound < AID-FP bound  for large k& and 9; ®(w,(A), A) symmetric.
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Hypergradient Approximation hetic Data

[IVAA) = g(A)]|

Logistic Regression

Kernel Ridge Regression Biased Regularization Hyper Representation

) N T 10
10° S
N
3
10t | — 1™ N 10
-—- FPk=t 53
5| e FP k=10 AN s
10° | - cok=t NS 10
------ CGk=10 AN
10°
0 250 500 750 1000 1250 0 50 100 150 200 0 25 50 75 100 125 150 0 100 200 300 400 500
t t t t

Hypergradient approximation errors (mean/std on randomly drawn values of ). g(\) is
equal to Vf,()) for ITD and to V f(\) for CG and FP. In all settings ®(-, \) is a contraction
and 9, ®(w, A) is symmetric.

- After a while the error decreases linearly for all methods.
- Methods with lower error bounds have lower error on average.
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Inexact Hypegradient Descent
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Inexact Hypegradient Descent (IHD)

Inexact Hypergradient Descent

Fors=0,1,2,...5
>‘s+1 = )\s - as©f<>‘s)

where AID/ITD gives Vf(),)

- Unconstrained (A = R™), similar results also for Projected IHD (A C R™).
- The bilevel objective f is usually non-convex.
- The errors |V f(X,) — Vf(),)| can be controlled by setting ¢ and k.
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Convergence to stationary points

Assume fis Lg-smooth and ||| be the euclidean norm.

Non-convex optimality measure:

min| VF(A)[* < ZHVf JI?

IHD with learning rate a, = o, 0 < a < 1/L; yields
2A S—1
2 < f 52
} )Hw e < [ Y ] .

Api=f(h) —minf(), 6, =[VFA) = V).
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L
f L-smooth = f()‘s+1> < f()‘s) + vf()‘s>T()\s+l _ As) + 7f”A5+1 - A5”2
. e Lia - )
Aerl - As - _avf()\s) = = f<)‘s> + a( - vf()‘s) vf<)‘s) + T”vf()‘s)H )

0<a< /L, = <) +a( = VITIIO) + SIFFO)P)

[b?—2a7b = la—bP—Jal* = = fO\,) +a (; IV/(0) — TF O - éuv,f@m?)
63
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L
f L-smooth = f()‘s+1> < f()‘s) + vf()‘s>T()\s+l _ As) + 7f”A5+1 - A5”2
. e Lia - )
Aerl - As - _avf()\s) = = f<)‘s> + a( - vf()‘s) vf<)‘s) + T”vf()‘s)H )

0<a< /L, = <) +a( = VITIIO) + SIFFO)P)

[b?—2a7b = la—bP—Jal* = = fO\,) +a (; IV/(0) — TF O - éuv,f@m?)
63

Rearranging = |[Vf(\,)|? < %(f()\s) — f(Xs1)) + 62
1 5-1 9 1 51
Telescoping = = DIV < o5 (f(Mo) = fFAsi1)) tg > a2
s=0 s=0
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Additional Assumptions

Assumption C
- Previous constants depending on X\ need to be uniformly bounded over A.

- In particular ®(-, \) is a g-contraction for all A € A.

- V,E(w*, ), Vo E(w*, ), 0, ®(w*, ), 0,P(w*, -) are Lipschitz continuous
Vw* € {w(A\) : A € A}

= fis L;-smooth.
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IHD iteration complexity

Set the learning rate a, = 1/L; and use AID-FP with

t, =k, =[rlog(s+1)], Ki= ——

S S

we have ;
1= 2L;A; +C
5 2 IVIOIP < —=—,
s=0

e-accuracy in O(e *log(e~1)) total LL and LS iterations, optimal up to log factors.
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IHD iteration complexity

Set the learning rate a, = 1/L; and use AID-FP with

t, =k, =[rlog(s+1)], Ki= ——

S S

we have ;
= 2L:A; +C
3 2 VIO < ==,
s=0

e-accuracy in O(e *log(e~1)) total LL and LS iterations, optimal up to log factors.

- Bilevel Min-Min: & is the LL condition number.
“t,=[(s+1)Y4/2] = O (e®*) (Ghadimi and Wang, 2018)

s
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Stochastic Bilevel Optimization
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Stochastic Bilevel Optimization Problem

\min f() = B(w(), \) = E¢[E(w()), A, €)]  upper-level (UL)

~

w(X) == ®(w(N), N) = E-[®(w(N), A, ¢)] lower-level (LL)

- E,d are too expensive to evaluate, we use ®, F instead.
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Stochastic Bilevel Optimization Problem

)\er/r\lig?zm FON) == E(w(\),\) = E([E(w()),\,€)] upper-level (UL)

~

w(A) == ®(w(N), N) = E[®(w(N),\,¢)] lower-level (LL)

- E,d are too expensive to evaluate, we use ®, F instead.
CEG (w,N) =LY B(w, A i), B(w,\) = 23" E(w,\,i) (large n).
- Eg. @ is the SGD map and E is the loss on a few examples.

- Large scale hyperparameter optimization and Meta-learning.
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Stochastic Implicit Differentiation (SID)

1. w,(X\) by ¢ steps of a stochastic solver approximating w(\).
— J ~

2. VBN =3, VEw(),\€)

3. v,(\) by k steps of a stochastic solver for the linear system

(I =0, (w, (M), N) v = V1 E(w,(A), ).

with solution v(\).
b VIO = VaB(wy(A), X) + 0,8(w,(X), A) g (A).
where 9,8(w,(\), ) = 3 7 9,8(w, (), A, ¢))
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Stochastic Implicit Differentiation (SID)

1. w,(X\) by ¢ steps of a stochastic solver approximating w(\).
— J ~

2, VE<wt<>‘)7)‘) = %Zj=1 VE(wt(A>7>\a§])

3. v,(\) by k steps of a stochastic solver for the linear system

(I =0, @(wy(A), )T )v = V1 E(wy (), A).

with solution v(\).
b VIO = VaB(wy(A), X) + 0,8(w,(X), A) g (A).
where 9,8(w,(\), ) = 3 7 9,8(w, (), A, ¢))

- VE, 0,® are estimated with mini-batches of size J.
+ LL solver will use ®(w, A, &,), LS solver will use ,®(w,(\), A, &) vy




SID Mean Squared Error (MSE): Preliminaries

Assumption A
Ve A

- ®(-,\) is a g, -contraction with ¢, < 1.

© E(,A), 019(-, A), ,@(-, A), VL E(-, A) and V4, E(-, A) are Lipschitz continuous

Assumption B
YA e A weR?

- V[@(w, A, )] < oy 1+ 0y ®(w, A) —w|? for oy 1,0y 5 >0
< V[0, ®(w, A\, €)], V[0y®(w, X, O)], V[V, E(w, X, £)], V[V, E(w, A, £)] are bounded.
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Theorem (SID error upper bound) (Grazzi et al., 2021, 2022)
Assume that VA € A, w € R?

Efw, () —wWI2] < py(6) (L rate)
Effor(\) — 2] < oy (k) (LS rate)

Then,

E[IVFN) — V)] < 007,,\ +c1 30 (1) + c2 200 (k) + c5 5px(t) oy (K).
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Theorem (SID error upper bound) (Grazzi et al., 2021, 2022)
Assume that VA € A, w € R?

Efw, () —wWI2] < py(6) (L rate)
Effor(\) — 2] < oy (k) (LS rate)

Then,

E[IVF(N) — V]2 < 007’)\ +c1 30 (1) + c2 200 (k) + c5 5px(t) oy (K).

How to solve the LL and LS?
- Stochastic Fixed-point (SGD rates):
pr(t) = O(1/t),0,(k) = O(1/k)  (decreasing step sizes).

- Conjugate Gradient does not have a stochastic variant. 100



Stochastic Fixed-point Iterations

Wiy = Wy + N (T (wy, ¢;) — wy).

- LL map: T'(w,¢) = ®(w, X, ¢).
- LS map: T(v, ¢) = 8, 8(w, (), A, Q) Tv + V1 B (w,(A), A).
- E[T(-,¢)] is a gy-contraction for both: we could use the same 7,.

< If T(w, ¢) = w—~V,§(w, ¢) we recover SGD with learning rate y7,.

0 [E[fi'.( )| Is a contraction = SGD rates on strongly convex and Lip. smooth.
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Stochastic Fixed-point Rates (Inspired by Bottou et al. (2018))

Assumptions

- w — E[T(w, )] is a g-contraction with ¢ < 1.
* Vw € R V[T(w, Q)] < 0y + 05| T(w) — w|®

If n, =n < - then

El, —w[?) < (1 —n(1 - q2>>t([Ewwo —wf?) - 1"_";2) oo
If n, = B/(y+1t) with 3 > 1/(1 — ¢?) and v > B(1 + o,), then
(6}

Efllw, — w*||?] < )
e~ w1} < =5
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Final Combined Rate

SID with decreasing step sizes for both the LL and LS achieves

EIVS0) = VFOIR =0 (3 +5+3)
MSE

MSE = JE[V ()] — VAI2 + EIVF(N) — EV V]I

Bias Variance

- With constant step sizes for the LS and decreasing for the LL we can control
the bias but not the variance (Ghadimi and Wang, 2018).

- No results for stochastic ITD: same samples for w,(X) and wj ().
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Regularized Logistic Regression on MNIST Odd vs Even A € R, ,

A=0.01

——

_ 1004 %

g —— Batch

| \ Stoch const
S Stoch dec
S
107t
T T T T T T T T T T T T T T T T
0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
epochs epochs epochs epochs

one regularization parameter: R (w) = 5|w|? A € R,
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Stochastic Inexact Hypergradient Descent

Stochastic Inexact Hypergradient Descent (SIHD)

Fors=0,1,2,...5
Aor1 = A —a,Vf(\,),  SIDgives Vf(),)

- Biased gradients: E[V f()\)] # Vf(\) = can't apply SGD/GD analysis.
- We can control the MSE E|V f(A) — V£(A)|? or the bias [|[E[Vf(A)] — Vf(\)|2.
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IHD analysis + Decreasing MSE —>

Theorem (Stochastic sample complexity) (Grazzi et al., 2022)

SIGD with UL learning rate o, = 1/L; and
decreasing (ns ;)jens ts =ks =Js=[c3S], ¢3>0

S S S

yileds
C
Z[EHVf N2 < = [2LfAf+ 3]

e-accuracy after O(e=2) samples, which is optimal (Arjevani et al., 2023).

SGD analysis + Decreasing Bias + J, = 1 = O(e 3) (Ghadimi and Wang, 2018).
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Summary Part 3

Deterministic Setting

- ITD and AID converge linearly (in t and k) to V£(\).
- AID is generally faster than ITD and requires less memory.

- IHD using AID has an almost optimal complexity of (3(6*1).
Stochastic Setting

- SID = AID with stochastic LL/LS solvers and minibatches of size J for VE, 9,®.
- MSE of SID converges as O(1/t+ 1/k+1/J).
- Stochastic IHD has an optimal complexity of O(e~2)
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Recent Advances

108



Non-smooth Bilevel (Smooth Almost Everywhere)

Examples:

- LASSO / Elastic Net

mlni E (; w 'rnJrz?ynJrz)

w(A) € argm1n—Z£ w'zy, ;) + Arlwl; + Azfwly

weRd n =i

- Non-smooth Loss function: e.g. hinge-loss in SVMs.
- Neural Networks with non-smooth activations.
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Non-smooth Bilevel - Part 2

[ssues:

- Might have more than one solution.
- Lower-level rates are more difficult to obtain.

- Requires generalized derivatives (e.g. Clarke): no chain rule.
Approaches:

- Smooth Algorithm + ITD (Ochs et al., 2015, 2016; Frecon et al., 2018)
- AID/ITD extension to weak derivatives (Bertrand et al., 2020, 2022)
- Make the chain rule work (Bolte et al., 2021)
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Non-smooth Guarantees

Deterministic Hypergradient Approximation

- In certain situations ITD/AID converges linearly after support identification
(Bertrand et al., 2020, 2022).

- ITD “converges” linearly for a broad class of functions (Bolte et al., 2022)

m



Non-smooth Guarantees

Deterministic Hypergradient Approximation

- In certain situations ITD/AID converges linearly after support identification
(Bertrand et al., 2020, 2022).

- ITD “converges” linearly for a broad class of functions (Bolte et al., 2022)

No guarantees for bilevel optimization or stochastic approaches.
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Warm-start

Inexact Gradient Descent

Fors=0,1,2,...5
)‘s+1 = )‘s - asﬁf(As))

ITD/AID/SID yields V f(),) using solvers for the LL and LS.

Idea: start solvers with w,(A,_;) and/or v, (A,_;).
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Warm-start

Inexact Gradient Descent

Fors=0,1,2,...5
)‘s+1 = )‘s - asﬁf(As))

ITD/AID/SID yields V f(),) using solvers for the LL and LS.

Idea: start solvers with w,(A,_;) and/or v, (A,_;).

— Often great performance improvements in practice.

— Bilevel e-accuracy with constant number of LL and LS steps.
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Warm-start Guarantees for Bilevel Min-Min

Deterministic Total Iteration Complexity:
- AID: O(e71) = O(e™1), ITD: O(e 1) (Ji et al., 2021).
Stochastic Sample Complexity:

-+ O(e?) (Arbel and Mairal, 2021).
. (3(5*2) for single-loop (1 LL steps) (Chen et al., 2021).
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Warm-start Guarantees for Bilevel Min-Min

Deterministic Total Iteration Complexity:
- AID: O(e71) = O(e™1), ITD: O(e 1) (Ji et al., 2021).
Stochastic Sample Complexity:

-+ O(e?) (Arbel and Mairal, 2021).
. (3(5*2) for single-loop (1 LL steps) (Chen et al., 2021).

Comments:

- More complex Analysis (couples the upper and lower levels).
- No improvement in e in the stochastic setting.
- Better Constant: max, |w(X) —wy(A)| = [w(Ag) — wy(Ag)|-

no warm-start warm-start
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Value Function Methods

Optimistic Bilevel value Function Lagrangian
N, Bw(A),A) - E(w, A) = Ly(w,\) = E(w,\)
Sy €arg f;ing(w, A) st g(w, \) — g(w(X),\) <0 +B(g(w, A) — g(w(X), A))
we

VyLg(w, ) = Vo E(w, A) + B(Vag(w, A) — Vag(w(A), A) + ' (A)TVig(w(A), N))

=0
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Value Function Methods

Optimistic Bilevel value Function Lagrangian
seamin o Blw),A) \min_ B(w, ) = Lyw,)) = B(w, )
Sy €arg Inglling(w, A) st g(w,\) — gw(\),\) <0 +B(g(w, A) — g(w(A), A))
weR?

VyLg(w,A) = Vo E(w, A) + B(Vag(w, A) — Vag(w(A),A)) = no w’(\) needed.
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Value Function Methods

Optimistic Bilevel Value Function Lagrangian
i E(w(A), A g ;
rea s g B \min B(w, ) o Ly(w,A) = B(w,\)
S, € arg;&ing(w, A) st g(w, A) — g(w(X),\) <0 +B(g(w, A) — g(w(A), A))

VyLg(w,A) = Vo E(w, A) + B(Vag(w, A) — Vag(w(A), A)) = no w’(\) needed.

- g(-,)\) (local) PL = Deterministic Rates (Liu et al., 2022)

- g(-, \) strongly-convex = Stochastic Rates (Kwon et al,, 2023; Chen et al.,
2023c,a)
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Other Advances

- Variance Reduction (Li et al,, 2022; Khanduri et al., 2021; Yang et al.,, 2021)
- Finite-sums Objectives (Dagréou et al,, 2022, 2023)

- Federated/Decentralized (Tarzanagh et al., 2022; Yang et al.,, 2022; Chen et al.,
2023b)

- Generalization (Bao et al., 2021)

- LL Multiple Minima. (Arbel and Mairal, 2022; Sow et al., 2022)

Little known with a NN at the lower-level.
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